GRANT AGREEMENT: 601138 | SCHEME FP7 ICT 2011.4.3
Promoting and Enhancing Reuse of Information throughout the Content Lifecycle taking account of Evolving Semantics [Digital
Preservation]

cPericles

FP7 Digital Preservation

By Space Applications Services
(david.deweerdt@spaceapplications.com)

“This project has received funding from the European Union’s Seventh Framework
Programme for research, technological development and demonstration under
grant agreement no601138”.

Policy Editor - What Is It?

e Proprietary web-based tool

e |t facilitates the creation, modification and, optionally, verification and execution of a set of
policies and procedures.

e |t features a template- and variables-based approach allowing an a priori definition of domain- or
organisational unit-specific policy blueprints, called policy templates. These templates are mixed
and matched into concrete application-specific policies.

e |t allows for implicit and automatic consistency and completeness checks and constraints
enforcement.

e The Policy Editor can be instantiated with a multi-layered configurable policy model.

e Integration with Digital Ecosystem Models allows ensuring consistency between application
policies and the ecosystem that these policies apply to.

e Optional support for executable low-level policies (called "processes") allowing for example
dependency monitoring, Digital Ecosystem Model updating, notifications and action triggering.

e Export abilities to JSON and a printable PDF format.

e Potential applications: Automated Data Management Plans, small & large-scale QA definition,
automatic constraint verification and enforcing.

Policy Editor - Main Features

Policy
Editor

Policy Editor - Main Features

Policy
Editor

Policy Editor - Main Features

/ Organization specific \

policy template

Each deployed application be
signed of by a senior QA
responsible.

Regression tests are to be run
every <XYZ> hours.

template

- Each deployed application should
adhere to ISO standard <XYZ>

- Each deployed application should

be registered to <XYZ>

/Industry specific policy\

Policy Editor - Main Features

/ Organization specific \

policy template

- Each deployed application be
signed of by a senior QA
responsible.

- Regression tests are to be run

every <XYZ> hours.
/Industry specific policy\

template

- Each deployed application should
adhere to ISO standard <XYZ>

- Each deployed application should

be registered to <XYZ>

Policy
Editor

Policy Editor - Main Features

/ Organization specific \

policy template

- Each deployed application be
signed of by a senior QA
responsible.

- Regression tests are to be run

every <XYZ> hours.
/Industry specific policy\

template

- Each deployed application should
adhere to ISO standard <XYZ>

- Each deployed application should

be registered to <XYZ>

Policy
Editor

/ Application specific \

policies

- Regression tests are to be run
every 24 hours.

Policy Editor - Main Features

/ Organization specific \

policy template

- Each deployed application be
signed of by a senior QA
responsible.

- Regression tests are to be run

every <XYZ> hours.
/Industry specific policy\

template

- Each deployed application should
adhere to ISO standard <XYZ>

- Each deployed application should

be registered to <XYZ>

Policy
Editor

/ Application specific \

policies

- Regression tests are to be run
every 24 hours.

- Each deployed application should
be registered to the national

registry.

Policy Editor - Main Features

4)

Policy Templates
Company-wide, industry-wide,
team-wide, ...

- 2

Policy
Editor

Policy Editor - Main Features

/Simple Policy Model\

- Policy Text
- Author
- Version

- Policy Text
- Author

- Version

- Maintainer
- Constraints
- Applicability

/Complex Policy Model\

Format
Language
Compliance
Target users
Replaced
policies

10

Policy Editor - Main Features

/Simple Policy Model\ /Complex Policy Model\

Policy Text - Policy Text - Format

Author - Author - Language

Version - Version - Compliance
Maintainer - Target users
Constraints - Replaced
Applicability policies

Policy
Editor

11

Policy Editor - Main Features

/Simple Policy Model\

Policy Text - Policy Text -

Author - Author -

Version - Version -
- Maintainer -
- Constraints -
- Applicability

/Complex Policy Model\

Format
Language
Compliance
Target users
Replaced
policies

Policy
Editor

Application specific policies

Policy Text: Regression tests are to be run every 24 hours.
Author: Mr. Smith
Version: Issue 1.0.1

12

Policy Editor - Main Features

4)

Policy Templates
Company-wide, industry-wide,
team-wide, ...

_

~

Customizable policy model
e Allow organization- or

application-specific policy
contents

Policy
Editor

13

Policy Editor - Main Features

4)

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

14

Policy Editor - Main Features

4)

Policies template

Regression tests are to be run every <frequency>

hours.
Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy
Editor

15

Policy Editor - Main Features

-

~

Policies template

Regression tests are to be run every <frequency>

hours.
Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy

Editor

Application specific policies

Regression tests are to be run every 24 hours.
Every 24 hours, a status report is to be sent to the
department Quality Assurance.

16

Policy Editor - Main Features

-

~

Policies template

Regression tests are to be run every <frequency>

hours.
Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy

Editor

Application specific policies
48
Regression tests are to be run every 4 hours.
Every 24 hours, a status report is to be sent to the
department Quality Assurance.

17

Policy Editor - Main Features

-

Policies template

Regression tests are to be run every <frequency>

hours.
Every <frequency> hours, a status report is to be sent

to the department <department>.

~

Policy

Editor

Application specific policies
48
Regression tests are to be run every 4 hours.
Every 24 hours, a status report is to be sent to the
department Quality Assurance.

~

Application specific policies

Regression tests are to be run every 48 hours.
Every 48 hours, a status report is to be sent to the
department Quality Assurance.

~

18

Policy Editor - Main Features

4)
Policy Templates
Company-wide, industry-wide,
team-wide, ...

_ /

Customizable policy model
e Allow organization- or

application-specific policy
contents

~

Policy
Editor

4)
Variables for consistency
e Policies (can) share variables
= updating one policy will update
the others automatically
NG /

Policy Editor - Main Features

a4)

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

20

Policy Editor - Main Features

a N

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

21

Policy Editor - Main Features

a N

Policies template

Regression tests are to be run every <frequency>

hours.
Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy
Editor

22

Policy Editor - Main Features

[N

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy
Editor

Application specific policies

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>

Policy Editor - Main Features

[N

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy
Editor

~

Application specific policies

Regression tests are to be run every <frequency>
hours.
Every <frequency> hours, a status report is to be sent

to the department <department>

24

Policy Editor - Main Features

-

~

Policies template

Regression tests are to be run every <frequency>

hours.
Every <frequency> hours, a status report is to be sent

to the department <department>.

T)

Application specifjc policies

- Regression tests are: to b,’e runlevery <frequency>
hours. /

- Every <frequency> Hourk, a gtatus report is to be sent
to the departm

R&D deplirtment

25

Policy Editor - Main Features

[N

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy
Editor

~

Application specific policies

Regression tests are to be run every <frequency>
hours.
Every <frequency> hours, a status report is to be sent

to the department QA Department

26

Policy Editor - Main Features

4)

Policy Templates
Company-wide, industry-wide,
team-wide, ...

= /
)

Customizable policy model
e Allow organization- or

application-specific policy
contents

Policy
Editor

4 N

Ecosystem integration
e Filling in policies using data
straight from the domain model

N

-~

Variables for consistency

NG

Policies (can) share variables

~

= updating one policy will update

the others automatically

)

27

Policy Editor - Main Features

a N

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy
Editor

Application specific policies

Regression tests are to be run every <frequency>
hours.

Every <frequency> hours, a status report is to be sent
to the department <department>

28

Policy Editor - Main Features

a N

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy
Editor

Application specific policies

48
Regression tests are to be run every <fre§§‘encz>

hours.
Every <frequency> hours, a status report is to be sent
to the department <department>

29

Policy Editor - Main Features

a N

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy
Editor

Application specific policies

Regression tests are to be run every 48 hours.
Every 48 hours, a status report is to be sent to the

department <department>
< QA Department

30

Policy Editor - Main Features

a N

Policies template

- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>.

Policy
Editor

Application specific policies

Regression tests are to be run every 48 hours.
Every 48 hours, a status report is to be sent to the
department QA Department.

31

Policy Editor - Main Features

a I a I
. Variables for consistency
Policy Templates

Companv-wide. industrv-wide e Policies (can) share variables
pany ’ Y ’ = updating one policy will update
team-wide, ...

the others automatically
N), NG /
\

Customizable policy model
e Allow organization- or

application-specific policy
contents

Policy
Editor

Verification of policy sets
e Assess and report on

completeness and consistency
of policy set

)

4 N

Ecosystem integration
e Filling in policies using data
straight from the domain model

N

Policy Editor - Main Features

-

Policy 1: Every document of type report must have an author
Process info:
For each doc in getDocumentsOfType(report):
assert(doc.has(“author”))

Application specific policies

Policy Editor - Main Features

-

Policy 1: Every document of type report must have an author
Process info:
For each doc in getDocumentsOfType(report):
assert(doc.has(“author”))

Application specific policies

~

Policy
Editor

Policy Editor - Main Features

4 N

Application specific policies

Policy 1: Every document of type report must have an author
Process info:
For each doc in getDocumentsOfType(report):
assert(doc.has(“author”))

Process execution
engine

Policy Editor - Main Features

a N

Application specific policies

Policy 1: Every document of type report must have an author
Process info:
For each doc in getDocumentsOfType(report):
assert(doc.has(“author”))

Process execution
engine

Policy Editor - Main Features

a N

Application specific policies

Policy 1: Every document of type report must have an author
Process info:
For each doc in getDocumentsOfType(report):
assert(doc.has(“author”))

Process execution
engine

Policy Editor - Policy Model

Policy Text - Policy Text

Author - Author

Version - Version
Maintainer
Constraints
Applicability

/Simple Policy Model\ /Complex Policy Model\

Format
Language
Compliance
Target users
Replaced
policies

e Policy Model determines:
o Properties of policies
o Possible default values of properties and values
e Policy Model currently excludes:
o Layering structure of the policies
= currently up to three levels of policies can be defined
= only the lowest level policy can contain executable code

Policy Editor - Policy Model

A ‘currently active’ Policy Model is composed of up to three components:

1. Policy Editor-specific Policy Model
- A partial policy model that is an inherent part of the Policy Editor and that is needed for
its proper functioning.
- This model is likely to be extended in the future as the Policy Editor gains additional
features.
- Stored and loaded as a JSON file

F olicyModel”: { Each policy must have these 4 properties, this list is fixed

"Properties": {

1CYIName=",
licyVersion>", H H H H
P < duscription>" : Internally, values given to the properties are stored in these 4 variables

"Version": |'
"Descripti

Variables":|{

teingl

"policyName": "String",
"policyVersion": "String, 1.0",
"description|': "String"
)
}
h

Policy Editor - Policy Model

A ‘currently active’ Policy Model is composed of up to three components:

2. An team/organization/...-specific Policy Model

- A policy model that is applied on top of the Policy Editor model and can override the
default values of the variables of the Policy Editor Policy Model.
- Stored and loaded as a JSON file

{
"PolicyModel": {
"Properties": {
"Identifier": "<policyld>",
"Name": "<policyName>",
"Version": "<policyVersion>",
"Level": "<policyLevel>",
"Type": "<policyType>",
"Statement Format": "<policyStatementFormat>",

C u StO m Va rl a b I e types i'“Statement Language": "<policyStatementLanguage>",
}

"Variables": {
"policyld": "String",
"policyName": "String",
"policyStatement": "String",
"policyVersion": "String",
wolicyLevel": "PolicyLevel",

"policyStater rmat": "PolicyStatementFormat",
"policyStatementLan, ": "PolicyStatementLanguage, SQL",

}...

b

"VariableTypes"{ {
"PolicyType": [fmandatory", "legal requirement", "aspirational", "busfness driven"],
"Policyleveltnfguidance", "procedure”, "control"],
"PolicyStatemeftFormat": ["formal”, "non-formalid],
"PolicyStatemefitLanguage": ["natural", "ReAL", "SWRL", "SQL"],

}

}

Custom variable type values —P

Policy Editor - Policy Model

A ‘currently active’ Policy Model is composed of up to three components:

3. Policy Template-specific modifications to the Model
- A Policy Template (see following slides) can also override or augment the active Policy
Model.
- In case of conflicting specifications of the Policy Model, the Policy Template has
precedence over the team/organization/... specific model, which itself has precedence
over the Policy Editor Policy Model.

Policy Editor - Policy Template

JSON file
Blueprints for templates
Contains properties (eg. name, department, policy text, ...)
o The properties shown/editable in the Policy Editor is determined by the used

Policy Model.
m If the template contains fewer properties than present in the model, they are
created
m If the template contains properties not present in the model, they are
ignored.

Properties can contain one or more variables that can propagate to other properties and
policies that contain the same variables.
o Variables are identified using a variable name.
o Multiple types of variables are supported:
m Local variables: their value is only relevant to the policy that contains the
variable
m Global variables: their value is propagated to all other active policies and
properties that contain that variable
m Hierarchical variables: their value only propagates to upper and lower level
policies, but not to siblings.

Policy Editor - Policy Template

e Example 1: empty Policy Template
o 5 toplevel structures

{ Top-level policies

"TopPoliciew/
’s
"SubPoliciesigH—"

I Lowest-level policies
"Processesgt—

I Type and optional default value of global variables

"Variables g~
h

" ariableTypﬂ'e{/
}

Mid-level policies

Definition of enumerated types

Policy Editor - Policy Template

e 5 toplevel structures

{ Top-level policies

"TopPoliciesﬂ/
’s
"SubPoliciesigH—"

I Lowest-level policies

"ProcesseW

12 Type and optional default value of global variables
"Variables

Yo
"VariableTy M
}

Mid-level policies

Definition of enumerated types

1l
J

Policy Editor - Policy Template

e Variables and Variable types

*

Global variables, name ends with _*

Variable type

"Variables": {
"reposito™MT_":"Strin glfff=—
"scripts_location_* ": "String, /Var/lib/policy-editor/scriptsag Optl onal default value

}

n

ariableTypes": {
"DataType": ["Meteosat Data", "Meteosat Data and Derived Products", "Meteosat Derived Products"],
"DistributionForm": ["digital", "graphical", "digital and graphical"]

}

Custom data type and its enumerated values

Policy Editor - Policy Template

e 5 toplevel structures

] -
1{ Top-level policies
"TopPoliciesh/

$s Mid-level policies
"SubPoliciesig+—"

> Lowest-level policies

"Processe*{/

I . Type and optional default value of global variables
}s
" ariableTpr
b
h

Definition of enumerated types

Policy Editor - Policy Template

Local variable, no suffix

e Variables and Variable types
Type and (optional) default value of local variable

{
"TopPolicies": {

"EUMETSAT_Policy_Tem ___ Properties of the policy

"Variables": {
"version": "String, 1.0"

I3
"ChildPolicie‘E
"EUMETSAT SubPolicy SetDataToRelease"
I
"SubPolicies": {
"EUMETSAT _SubPolicy SetDataToRelease": {
"Properties": {
"Name":
"Description": "Set the
"Statement": "Select <dat:

Sublevel policies

Hierarchical variable, | suffix

)5
"Variables": {

"datatype_|_": "DataType! Not all Policy Model properties are present

} (no ‘Version’), will be autocreated

"ChildPolicies:
"SetReleaseDataProcess_Template"
1

"Processes": {
"SetReleaseDataProcess Temy
"Properties":

Global variable, * suffix

% "Set the time before release, perl to update ttl

"Name": "Release Time Update",
"Statement": "python <scripts_lo
<datatype | >"

s Executable code, can be executed by the Policy Editor

=

n_* >/setReleaseData.py

Policy Editor - User Interface

Please refer to the demo screencast

