
GRANT AGREEMENT: 601138 | SCHEME FP7 ICT 2011.4.3
Promoting and Enhancing Reuse of Information throughout the Content Lifecycle taking account of Evolving Semantics [Digital
Preservation]

“This project has received funding from the European Union’s Seventh Framework
Programme for research, technological development and demonstration under
grant agreement no601138”.

Policy Editor
By Space Applications Services
(david.deweerdt@spaceapplications.com)

● Proprietary web-based tool
● It facilitates the creation, modification and, optionally, verification and execution of a set of

policies and procedures.
● It features a template- and variables-based approach allowing an a priori definition of domain- or

organisational unit-specific policy blueprints, called policy templates. These templates are mixed
and matched into concrete application-specific policies.

● It allows for implicit and automatic consistency and completeness checks and constraints
enforcement.

● The Policy Editor can be instantiated with a multi-layered configurable policy model.
● Integration with Digital Ecosystem Models allows ensuring consistency between application

policies and the ecosystem that these policies apply to.
● Optional support for executable low-level policies (called "processes") allowing for example

dependency monitoring, Digital Ecosystem Model updating, notifications and action triggering.
● Export abilities to JSON and a printable PDF format.
● Potential applications: Automated Data Management Plans, small & large-scale QA definition,

automatic constraint verification and enforcing.

Policy Editor - What Is It?

Policy
Editor

3

Policy Editor - Main Features

Policy
Editor

Policy Templates
Company-wide, industry-wide,
team-wide, ...

4

Policy Editor - Main Features

Industry specific policy
template

- Each deployed application should
adhere to ISO standard <XYZ>

- Each deployed application should
be registered to <XYZ>

- ...

Organization specific
policy template

- Each deployed application be
signed of by a senior QA
responsible.

- Regression tests are to be run
every <XYZ> hours.

- ...

Policy Templates
Company-wide, industry-wide,
team-wide, ...

5

Policy Editor - Main Features

Industry specific policy
template

- Each deployed application should
adhere to ISO standard <XYZ>

- Each deployed application should
be registered to <XYZ>

- ...

Organization specific
policy template

- Each deployed application be
signed of by a senior QA
responsible.

- Regression tests are to be run
every <XYZ> hours.

- ...

Policy
Editor

Policy Templates
Company-wide, industry-wide,
team-wide, ...

6

Policy Editor - Main Features

Industry specific policy
template

- Each deployed application should
adhere to ISO standard <XYZ>

- Each deployed application should
be registered to <XYZ>

- ...

Organization specific
policy template

- Each deployed application be
signed of by a senior QA
responsible.

- Regression tests are to be run
every <XYZ> hours.

- ...

Policy
Editor Application specific

policies

- Regression tests are to be run
every 24 hours.

Policy Templates
Company-wide, industry-wide,
team-wide, ...

7

Policy Editor - Main Features

Industry specific policy
template

- Each deployed application should
adhere to ISO standard <XYZ>

- Each deployed application should
be registered to <XYZ>

- ...

Organization specific
policy template

- Each deployed application be
signed of by a senior QA
responsible.

- Regression tests are to be run
every <XYZ> hours.

- ...

Policy
Editor Application specific

policies

- Regression tests are to be run
every 24 hours.

- Each deployed application should
be registered to the national
registry.

- ...

Policy Templates
Company-wide, industry-wide,
team-wide, ...

8

Policy Editor - Main Features

Policy
Editor

Policy Templates
Company-wide, industry-wide,
team-wide, ...

Customizable policy model
● Allow organization- or

application-specific policy
contents

9

Policy Editor - Main Features

Customizable policy model
● Allow organization- or

application-specific policy
contents

Simple Policy Model

- Policy Text
- Author
- Version

Complex Policy Model

- Policy Text
- Author
- Version
- Maintainer
- Constraints
- Applicability

- Format
- Language
- Compliance
- Target users
- Replaced

policies

10

Policy Editor - Main Features

Customizable policy model
● Allow organization- or

application-specific policy
contents

Simple Policy Model

- Policy Text
- Author
- Version

Complex Policy Model

- Policy Text
- Author
- Version
- Maintainer
- Constraints
- Applicability

- Format
- Language
- Compliance
- Target users
- Replaced

policies

Policy
Editor

11

Policy Editor - Main Features

Customizable policy model
● Allow organization- or

application-specific policy
contents

Simple Policy Model

- Policy Text
- Author
- Version

Complex Policy Model

- Policy Text
- Author
- Version
- Maintainer
- Constraints
- Applicability

- Format
- Language
- Compliance
- Target users
- Replaced

policies

Policy
Editor

Application specific policies

Policy Text: Regression tests are to be run every 24 hours.
Author: Mr. Smith
Version: Issue 1.0.1 12

Policy Editor - Main Features

Policy
Editor

Customizable policy model
● Allow organization- or

application-specific policy
contents

Variables for consistency
● Policies (can) share variables

⇒ updating one policy will update
the others automatically

Policy Templates
Company-wide, industry-wide,
team-wide, ...

13

Policy Editor - Main Features

Variables for consistency
● Policies (can) share variables

⇒ updating one policy will update
the others automatically

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

14

Policy Editor - Main Features

Variables for consistency
● Policies (can) share variables

⇒ updating one policy will update
the others automatically

Policies template

Policy
Editor

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

15

Policy Editor - Main Features

Variables for consistency
● Policies (can) share variables

⇒ updating one policy will update
the others automatically

Policies template

Policy
Editor

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Application specific policies
- Regression tests are to be run every 24 hours.
- Every 24 hours, a status report is to be sent to the

department Quality Assurance.

16

Policy Editor - Main Features

Variables for consistency
● Policies (can) share variables

⇒ updating one policy will update
the others automatically

Policies template

Policy
Editor

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Application specific policies
- Regression tests are to be run every 24 hours.
- Every 24 hours, a status report is to be sent to the

department Quality Assurance.

48

17

Policy Editor - Main Features

Variables for consistency
● Policies (can) share variables

⇒ updating one policy will update
the others automatically

Policies template

Policy
Editor

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Application specific policies
- Regression tests are to be run every 24 hours.
- Every 24 hours, a status report is to be sent to the

department Quality Assurance.

48
Application specific policies

- Regression tests are to be run every 48 hours.
- Every 48 hours, a status report is to be sent to the

department Quality Assurance.

18

Policy Editor - Main Features

Policy
Editor

Variables for consistency
● Policies (can) share variables

⇒ updating one policy will update
the others automatically

Customizable policy model
● Allow organization- or

application-specific policy
contents

Ecosystem integration
● Filling in policies using data

straight from the domain model

Policy Templates
Company-wide, industry-wide,
team-wide, ...

19

Policy Editor - Main Features

Ecosystem integration
● Filling in policies using data

straight from the domain model

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

20

Policy Editor - Main Features

Ecosystem integration
● Filling in policies using data

straight from the domain model

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

21

Policy Editor - Main Features

Ecosystem integration
● Filling in policies using data

straight from the domain model

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Policy
Editor

22

Policy Editor - Main Features

Ecosystem integration
● Filling in policies using data

straight from the domain model

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Policy
Editor

Application specific policies
- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>

23

Policy Editor - Main Features

Ecosystem integration
● Filling in policies using data

straight from the domain model

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Policy
Editor

Application specific policies
- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>

24

Policy Editor - Main Features

Ecosystem integration
● Filling in policies using data

straight from the domain model

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Policy
Editor

Application specific policies
- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department
Management department
QA department
R&D department

25

Policy Editor - Main Features

Ecosystem integration
● Filling in policies using data

straight from the domain model

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Policy
Editor

Application specific policies
- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department QA Department

26

Policy Editor - Main Features

Policy
Editor

Variables for consistency
● Policies (can) share variables

⇒ updating one policy will update
the others automatically

Ecosystem integration
● Filling in policies using data

straight from the domain model

Customizable policy model
● Allow organization- or

application-specific policy
contents

Verification of policy sets
● Assess and report on

completeness and consistency
of policy set

Policy Templates
Company-wide, industry-wide,
team-wide, ...

27

Policy Editor - Main Features

Verification of policy sets
● Assess and report on

completeness and consistency
of policy set

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Policy
Editor

Application specific policies
- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>

28

Policy Editor - Main Features

Verification of policy sets
● Assess and report on

completeness and consistency
of policy set

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Policy
Editor

Application specific policies
- Regression tests are to be run every <frequency>

hours.
- Every <frequency> hours, a status report is to be sent

to the department <department>

48

29

Policy Editor - Main Features

Verification of policy sets
● Assess and report on

completeness and consistency
of policy set

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Policy
Editor

Application specific policies
- Regression tests are to be run every 48 hours.
- Every 48 hours, a status report is to be sent to the

department <department>
QA Department

30

Policy Editor - Main Features

Verification of policy sets
● Assess and report on

completeness and consistency
of policy set

Policies template

- Regression tests are to be run every <frequency>
hours.

- Every <frequency> hours, a status report is to be sent
to the department <department>.

Policy
Editor

Application specific policies
- Regression tests are to be run every 48 hours.
- Every 48 hours, a status report is to be sent to the

department QA Department.

31

Policy Editor - Main Features

Policy
Editor

Variables for consistency
● Policies (can) share variables

⇒ updating one policy will update
the others automatically

Ecosystem integration
● Filling in policies using data

straight from the domain model

Customizable policy model
● Allow organization- or

application-specific policy
contents

Verification of policy sets
● Assess and report on

completeness and consistency
of policy set

Policy Validation
● Allow to execute and Validate

policies
● Report on validation results

Policy Templates
Company-wide, industry-wide,
team-wide, ...

32

Policy Editor - Main Features

Policy Validation
● Allow to execute and Validate

policies
● Report on validation results

Application specific policies
Policy 1: Every document of type report must have an author

Process info:
For each doc in getDocumentsOfType(report):

assert(doc.has(“author”))

33

Policy Editor - Main Features

Policy Validation
● Allow to execute and Validate

policies
● Report on validation results

Application specific policies
Policy 1: Every document of type report must have an author

Process info:
For each doc in getDocumentsOfType(report):

assert(doc.has(“author”))

Policy
Editor

34

Policy Editor - Main Features

Policy Validation
● Allow to execute and Validate

policies
● Report on validation results

Application specific policies
Policy 1: Every document of type report must have an author

Process info:
For each doc in getDocumentsOfType(report):

assert(doc.has(“author”))

Policy
Editor

Execute processes

Process execution
engine

35

Policy Editor - Main Features

Policy Validation
● Allow to execute and Validate

policies
● Report on validation results

Application specific policies
Policy 1: Every document of type report must have an author

Process info:
For each doc in getDocumentsOfType(report):

assert(doc.has(“author”))

Policy
Editor

Execute processes

Process execution
engine

36

Policy Editor - Main Features

Policy Validation
● Allow to execute and Validate

policies
● Report on validation results

Application specific policies
Policy 1: Every document of type report must have an author

Process info:
For each doc in getDocumentsOfType(report):

assert(doc.has(“author”))

Policy
Editor

Execute processes

Process execution
engine

37

Policy Editor - Main Features

Policy Editor - Policy Model

Simple Policy Model

- Policy Text
- Author
- Version

Complex Policy Model

- Policy Text
- Author
- Version
- Maintainer
- Constraints
- Applicability

- Format
- Language
- Compliance
- Target users
- Replaced

policies

● Policy Model determines:
○ Properties of policies
○ Possible default values of properties and values

● Policy Model currently excludes:
○ Layering structure of the policies

⇒ currently up to three levels of policies can be defined
⇒ only the lowest level policy can contain executable code

Policy Editor - Policy Model

A ‘currently active’ Policy Model is composed of up to three components:

1. Policy Editor-specific Policy Model
- A partial policy model that is an inherent part of the Policy Editor and that is needed for

its proper functioning.
- This model is likely to be extended in the future as the Policy Editor gains additional

features.
- Stored and loaded as a JSON file

{
 "PolicyModel": {
 "Properties": {
 "Identifier": "<policyId>",
 "Name": "<policyName>",
 "Version": "<policyVersion>",
 "Description": "<description>"
 },
 "Variables": {
 "policyId": "String",
 "policyName": "String",
 "policyVersion": "String, 1.0",
 "description": "String"
 }
 }
}

Each policy must have these 4 properties, this list is fixed

Internally, values given to the properties are stored in these 4 variables

The 4 variables have a type

The variables can have an optional default value

Policy Editor - Policy Model

A ‘currently active’ Policy Model is composed of up to three components:

2. An team/organization/...-specific Policy Model
- A policy model that is applied on top of the Policy Editor model and can override the

default values of the variables of the Policy Editor Policy Model.
- Stored and loaded as a JSON file

Custom variable types

Custom variable type values

Custom variable type, default value

{
 "PolicyModel": {
 "Properties": {
 "Identifier": "<policyId>",
 "Name": "<policyName>",
 "Version": "<policyVersion>",
 "Level": "<policyLevel>",
 "Type": "<policyType>",
 "Statement Format": "<policyStatementFormat>",
 "Statement Language": "<policyStatementLanguage>",
 ...
 },
 "Variables": {
 "policyId": "String",
 "policyName": "String",
 "policyStatement": "String",
 "policyVersion": "String",
 "policyLevel": "PolicyLevel",
 "policyType": "PolicyType",
 "policyStatementFormat": "PolicyStatementFormat",
 "policyStatementLanguage": "PolicyStatementLanguage, SQL",
 ...
 }
 },
 "VariableTypes": {
 "PolicyType": ["mandatory", "legal requirement", "aspirational", "business driven"],
 "PolicyLevel": ["guidance", "procedure", "control"],
 "PolicyStatementFormat": ["formal", "non-formal"],
 "PolicyStatementLanguage": ["natural", "ReAL", "SWRL", "SQL"],
 ...
 }
}

Policy Editor - Policy Model

A ‘currently active’ Policy Model is composed of up to three components:

3. Policy Template-specific modifications to the Model
- A Policy Template (see following slides) can also override or augment the active Policy

Model.
- In case of conflicting specifications of the Policy Model, the Policy Template has

precedence over the team/organization/… specific model, which itself has precedence
over the Policy Editor Policy Model.

Policy Editor - Policy Template

● JSON file
● Blueprints for templates
● Contains properties (eg. name, department, policy text, …)

○ The properties shown/editable in the Policy Editor is determined by the used
Policy Model.

■ If the template contains fewer properties than present in the model, they are
created

■ If the template contains properties not present in the model, they are
ignored.

● Properties can contain one or more variables that can propagate to other properties and
policies that contain the same variables.

○ Variables are identified using a variable name.
○ Multiple types of variables are supported:

■ Local variables: their value is only relevant to the policy that contains the
variable

■ Global variables: their value is propagated to all other active policies and
properties that contain that variable

■ Hierarchical variables: their value only propagates to upper and lower level
policies, but not to siblings.

Policy Editor - Policy Template

● Example 1: empty Policy Template
○ 5 toplevel structures

{
 "TopPolicies": {
 },
 "SubPolicies": {
 },
 "Processes": {
 },
 "Variables": {
 },
 "VariableTypes": {
 }
}

Top-level policies

Lowest-level policies

Mid-level policies

Type and optional default value of global variables

Definition of enumerated types

Policy Editor - Policy Template

● 5 toplevel structures

{
 "TopPolicies": {
 },
 "SubPolicies": {
 },
 "Processes": {
 },
 "Variables": {
 },
 "VariableTypes": {
 }
}

Top-level policies

Lowest-level policies

Mid-level policies

Type and optional default value of global variables

Definition of enumerated types

Policy Editor - Policy Template

● Variables and Variable types

 "Variables": {
 "repository_*_":"String",
 "scripts_location_*_": "String, /var/lib/policy-editor/scripts"
 },
 "VariableTypes": {
 "DataType": ["Meteosat Data", "Meteosat Data and Derived Products", "Meteosat Derived Products"],
 "DistributionForm": ["digital", "graphical", "digital and graphical"]
 }

Global variables, name ends with _*_

Custom data type and its enumerated values

Variable type

Optional default value

Policy Editor - Policy Template

● 5 toplevel structures

{
 "TopPolicies": {
 },
 "SubPolicies": {
 },
 "Processes": {
 },
 "Variables": {
 },
 "VariableTypes": {
 }
}

Top-level policies

Lowest-level policies

Mid-level policies

Type and optional default value of global variables

Definition of enumerated types

Policy Editor - Policy Template

● Variables and Variable types

{
 "TopPolicies": {
 "EUMETSAT_Policy_Template": {
 "Properties": {
 "Version": "<version>",
 "Description": "Data distribution policy",
 "Name": "EumetSat Policy",
 "Statement": "All data is to be released regularly"
 },
 "Variables": {
 "version": "String, 1.0"
 },
 "ChildPolicies": [
 "EUMETSAT_SubPolicy_SetDataToRelease"
]}},
 "SubPolicies": {
 "EUMETSAT_SubPolicy_SetDataToRelease": {
 "Properties": {
 "Name": "ReleaseData",
 "Description": "Set the data to release",
 "Statement": "Select <datatype_|_> as the data to be released"
 },
 "Variables": {
 "datatype_|_": "DataType"
 },
 "ChildPolicies": [
 "SetReleaseDataProcess_Template"
]}},
 "Processes": {
 "SetReleaseDataProcess_Template": {
 "Properties": {
 "Description": "Set the time before release, perl to update ttl
model",
 "Name": "Release Time Update",
 "Statement": "python <scripts_location_*_>/setReleaseData.py
<datatype_|_>"
 }}}}

Local variable, no suffix

Hierarchical variable, _|_ suffix

Properties of the policy

Type and (optional) default value of local variable

Sublevel policies

Global variable, _*_ suffix

Not all Policy Model properties are present
(no ‘Version’), will be autocreated

Executable code, can be executed by the Policy Editor

Policy Editor - User Interface

Please refer to the demo screencast

